Wearable Lower-Limb Exoskeleton for Children with Cerebral Palsy: A Systematic Review of Mechanical Design, Actuation Type, Control Strategy, and Clinical Evaluation

50Citations
Citations of this article
145Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Children with a neurological disorder such as cerebral palsy (CP) severely suffer from a reduced quality of life because of decreasing independence and mobility. Although there is no cure yet, a lower-limb exoskeleton (LLE) has considerable potential to help these children experience better mobility during overground walking. The research in wearable exoskeletons for children with CP is still at an early stage. This paper shows that the number of published papers on LLEs assisting children with CP has significantly increased in recent years; however, no research has been carried out to review these studies systematically. To fill up this research gap, a systematic review from a technical and clinical perspective has been conducted, based on the PRISMA guidelines, under three extended topics associated with 'lower limb', 'exoskeleton', and 'cerebral palsy' in the databases Scopus and Web of Science. After applying several exclusion criteria, seventeen articles focused on fifteen LLEs were included for careful consideration. These studies address some consistent positive evidence on the efficacy of LLEs in improving gait patterns in children with CP. Statistical findings show that knee exoskeletons, brushless DC motors, the hierarchy control architecture, and CP children with spastic diplegia are, respectively, the most common mechanical design, actuator type, control strategy, and clinical characteristics for these LLEs. Clinical studies suggest ankle-foot orthosis as the primary medical solution for most CP gait patterns; nevertheless, only one motorized ankle exoskeleton has been developed. This paper shows that more research and contribution are needed to deal with open challenges in these LLEs.

Cite

CITATION STYLE

APA

Sarajchi, M., Al-Hares, M. K., & Sirlantzis, K. (2021). Wearable Lower-Limb Exoskeleton for Children with Cerebral Palsy: A Systematic Review of Mechanical Design, Actuation Type, Control Strategy, and Clinical Evaluation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 2695–2720. https://doi.org/10.1109/TNSRE.2021.3136088

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free