Synthesis, properties, and photopolymerization of liquid-crystalline oxetanes: Application in transflective liquid-crystal displays

22Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Mixtures of liquid-crystalline di-oxetanes and mono-oxetanes are made for the purpose of making birefringent films by photopolymerization. The composition of a di-oxetane mixture that forms spin-coated films of planarly aligned nematic monomers is reported. These films are photopolymerized in air. The molecular order of the monomers can be changed on the microscale to form thin films with alternating birefringent and isotropic parts by using a combination of photopolymerization and heating. The interface observed between the birefringent and isotropic 10 μm × 10 μm domains is very sharp and the films show hardly any surface corrugation. In addition, the polymerized films are thermally stable, making them very suitable for use as patterned thin-film retarders in high-performance transflective liquid-crystal displays (LCDs) which satisfy customer demand for displays that are brighter and thinner and that deliver better optical performance than conventional LCDs with an external non-patterned retarder. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

Cite

CITATION STYLE

APA

Van Der Zande, B. M. I., Roosendaal, S. J., Doornkamp, C., Steenbakkers, J., & Lub, J. (2006). Synthesis, properties, and photopolymerization of liquid-crystalline oxetanes: Application in transflective liquid-crystal displays. Advanced Functional Materials, 16(6), 791–798. https://doi.org/10.1002/adfm.200500359

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free