Objectives: Next-generation sequencing (NGS) data in the identification of disease-causing genes provides a promising opportunity in the diagnosis of disease. Beyond the previous efforts for NGS data alignment, variant detection, and visualization, developing a comprehensive annotation system supported by multiple layers of disease phenotype-related databases is essential for deciphering the human genome. To satisfy the impending need to decipher the human genome, it is essential to develop a comprehensive annotation system supported by multiple layers of disease phenotype-related databases. Methods: AnsNGS (Annotation system of sequence variations for next-generation sequencing data) is a tool for contextualizing variants related to diseases and examining their functional consequences. The AnsNGS integrates a variety of annotation databases to attain multiple levels of annotation. Results: The AnsNGS assigns biological functions to variants, and provides gene (or disease)-centric queries for finding disease-causing variants. The AnsNGS also connects those genes harbouring variants and the corresponding expression probes for downstream analysis using expression microarrays. Here, we demonstrate its ability to identify disease-related variants in the human genome. Conclusions: The AnsNGS can give a key insight into which of these variants is already known to be involved in a disease-related phenotype or located in or near a known regulatory site. The AnsNGS is available free of charge to academic users and can be obtained from http://snubi.org/software/AnsNGS/. © 2013 The Korean Society of Medical Informatics.
CITATION STYLE
Na, Y. J., Cho, Y., & Kim, J. H. (2013). AnsNGS: An annotation system to sequence variations of next generation sequencing data for disease-related rhenotypes. Healthcare Informatics Research, 19(1), 50–55. https://doi.org/10.4258/hir.2013.19.1.50
Mendeley helps you to discover research relevant for your work.