Effects of land use on flow rate change indices

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

The goal of this study was to analyze the impact of agriculture on the spatial and temporal variability of flow rate change indices from 1930 to 2008. The two indices used are the coefficient of immoderation (CI) and the coefficient of variation (CV). Values of these two indices are higher for the L'Assomption River agricultural watershed than for the Matawin River forested watershed due to higher runoff in the former than in the latter. The difference in these values between the two watersheds is greater for winter, but it is lower for summer, when the difference in runoff between the two watersheds is strongly attenuated by the presence of crops. Regarding the temporal variability, a difference between the two watersheds is observed in the fall. For the agricultural watershed, mean values of neither index show a break in slope, while a break is observed for the forested watershed. In both watersheds, both indices are positively correlated with maximum temperature and total rainfall in winter, but only to this latter climate variable in the fall. In springtime, the two indices are negatively correlated with minimum temperature in the forested watershed, but only CV is correlated, positively, with this same climate variable in the agricultural watershed.

Cite

CITATION STYLE

APA

Assani, A., Delisle, F., Landry, R., & Muma, M. (2015). Effects of land use on flow rate change indices. Forests, 6(11), 4349–4359. https://doi.org/10.3390/f6114349

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free