Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: A review

158Citations
Citations of this article
179Readers
Mendeley users who have this article in their library.

Abstract

Diatoms dominate nearly half of current oceanic productivity, so their responses to ocean acidification are of general concern regarding future oceanic carbon sequestration. Community, mesocosm and laboratory studies show a range of diatom growth and photophysiological responses to increasing pCO2. Nearly 20 studies on effects of elevated pCO2 on diatoms have shown stimulations, no effects or inhibitions of growth rates. These differential responses could result from differences in experimental setups, cell densities, levels of light and temperature, but also from taxon-specific physiology. Generally, ocean acidification treatments of lowered pH with elevated CO 2 stimulate diatom growth under low to moderate levels of light, but lead to growth inhibition when combined with excess light. Additionally, diatom cell sizes and their co-varying metabolic rates can influence responses to increasing pCO2 and decreasing pH, although cell size effects are confounded with taxonomic specificities in cell structures and metabolism. Here we summarise known diatom growth and photophysiological responses to increasing pCO2 and decreasing pH, and discuss some reasons for the diverse responses observed across studies. © 2014 CSIRO.

Cite

CITATION STYLE

APA

Gao, K., & Campbell, D. A. (2014). Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: A review. Functional Plant Biology, 41(5), 449–459. https://doi.org/10.1071/FP13247

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free