Background: Little is known about the differences among adult and foetal equine mesenchymal stem cells (MSCs), and no data exist about their comparative ultrastructural morphology. The aim of this study was to describe and compare characteristics, immune properties, and ultrastructural morphology of equine adult (bone marrow: BM, and adipose tissue: AT) and foetal adnexa derived (umbilical cord blood: UCB, and Wharton's jelly: WJ) MSCs. Results: No differences were observed in proliferation during the first 3 passages. While migration ability was similar among cells, foetal MSCs showed a higher adhesion ability, forming smaller spheroids after hanging drop culture (P < 0.05). All MSCs differentiated toward adipogenic, chondrogenic and osteogenic lineages, only tenogenic differentiation was less evident for WJ-MSCs. Data obtained by PCR confirmed MHC1 expression and lack of MHC2 expression in all four cell types. Foetal adnexa MSCs were positive for genes specific for anti-inflammatory and angiogenic factors (IL6, IL8, ILβ1) and WJ-MSCs were the only positive for OCT4 pluripotency gene. At immunofluorescence all cells expressed typical mesenchymal markers (α-SMA, N-cadherin), except for BM-MSCs, which did not express N-cadherin. By transmission electron microscopy, it was observed that WJ-MSCs had a higher (P < 0.05) number of microvesicles compared to adult MSCs, and UCB-MSCs showed more microvesicles than BM-MSCs (P < 0.05). AT-MSCs had a lower number of mitochondria than WJ-MSCs (P < 0.05), and mitochondrial area was higher for WJ-MSCs compared to UCB and AT-MSCs (P < 0.05). Conclusions: Results demonstrate that MSCs from adult and foetal tissues have different characteristics, and foetal MSCs, particularly WJ derived ones, seem to have some charactestics that warrant further investigation into potential advantages for clinical application.
CITATION STYLE
Merlo, B., Teti, G., Lanci, A., Burk, J., Mazzotti, E., Falconi, M., & Iacono, E. (2019). Comparison between adult and foetal adnexa derived equine post-natal mesenchymal stem cells. BMC Veterinary Research, 15(1). https://doi.org/10.1186/s12917-019-2023-5
Mendeley helps you to discover research relevant for your work.