Improved High Temperature Performance of a Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage Lithium-Ion Batteries by Surface Modification of a Flexible Conductive Nanolayer

37Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The composite cathode material of the conductive polymer polyaniline (PANI)-coated spinel structural LiNi0.5Mn1.5O4 (LNMO) for high-voltage lithium-ion batteries has been successfully synthesized by an in situ chemical oxidation polymerization method. The electrode of the LNMO-PANI composite material shows superior rate capability and excellent cycling stability. A capacity of 123.4 mAh g-1 with the capacity retention of 99.7% can be maintained at 0.5C after 200 cycles in the voltage range of 3.0-4.95 V (vs Li/Li+) at room temperature. Even with cycling at 5C, a capacity of 65.5 mAh g-1 can still be achieved. The PANI coating layer can not only reduce the dissolution of Ni and Mn from the LNMO cubic framework into the electrolyte during cycling, but also significantly improve the undesirable interfacial reactions between the cathode and electrolyte, and markedly increase the electrical conductivity of the electrode. At 55 °C, the LNMO-PANI composite material exhibits more superior cyclic performance than pristine, that is, the capacity retention of 94.5% at 0.5C after 100 cycles vs that of 13.0%. This study offers an effective strategy for suppressing the decomposition of an electrolyte under the highly oxidizing (>4.5 V) and elevated temperature conditions.

Cite

CITATION STYLE

APA

Dong, H., Zhang, Y., Zhang, S., Tang, P., Xiao, X., Ma, M., … Yang, S. (2019). Improved High Temperature Performance of a Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage Lithium-Ion Batteries by Surface Modification of a Flexible Conductive Nanolayer. ACS Omega, 4(1), 185–194. https://doi.org/10.1021/acsomega.8b02571

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free