Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions

253Citations
Citations of this article
164Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Double strand DNA breaks in plants are primarily repaired via non-homologous end joining. However, little is known about the molecular events underlying this process. We have studied non-homologous end joining of linearized plasmid DNA with different termini configurations following transformation into tobacco cells. A variety of sequences were found at novel end junctions. Joining with no sequence alterations was rare. In most cases, deletions were found at both ends, and rejoining usually occurred at short repeats. A distinct feature of plant junctions was the presence of relatively large, up to 1.2 kb long, insertions (filler DNA), in ~ 30% of the analyzed clones. The filler DNA originated either from internal regions of the plasmid or from tobacco genomic DNA. Some insertions had a complex structure consisting of several reshuffled plasmid-related regions. These data suggest that double strand break repair in plants involves extensive end degradation, DNA synthesis following invasion of ectopic templates and multiple template switches. Such a mechanism is reminiscent of the synthesis-dependent recombination in bacteriophage T4. It can also explain the frequent 'DNA scrambling' associated with illegitimate recombination in plants.

Cite

CITATION STYLE

APA

Gorbunova, V., & Levy, A. A. (1997). Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Research, 25(22), 4650–4657. https://doi.org/10.1093/nar/25.22.4650

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free