Long-chain PUFA (LC-PUFA) are important for fetal and neonatal brain development. However, their accretion in the brain is compromised during maternal protein restriction. Hence, we investigated the effect of maternal supplementation with n-3 DHA plus n-6 arachidonic acid (ARA) at a low protein level (9 %) on offspring brain fatty acid accretion using Wistar rats (nine rats per group) randomly fed a control (C), a low-protein (LP) or a low-protein DHA + ARA-supplemented (LPS) diet during gestation and lactation. At birth, pups from the LPS group had the highest brain DHA and n-3 fatty acid levels (P = 0·001), whereas pups from the LP group had the highest MUFA (P = 0·05) but the lowest DHA and total n-3 PUFA levels (P = 0·000). During lactation, pups from the LPS group accrued significantly more a-linolenic acid (P = 0·003), EPA (P = 0·02) and DHA (P = 0·000) in brain lipids than pups from the LP group, whereas brain lipids of pups from the LP group had markedly increased levels of the n-3 deficiency marker docosapentaenoic acid and n-6:n-3 ratio (P = 0·000). Owing to supplementation, milk from LPS dams had the highest DHA and ARA, but lower SCFA and medium-chain fatty acids as compared with milk from C and LP dams during early lactation, but normalised by mid-lactation. To conclude, adverse effects of restricted maternal protein intake on LC-PUFA accretion in the brain of offspring were ameliorated by alterations in maternal milk fatty acid profile due to supplementation. Results underscore the importance of LC-PUFA for protein-deficient mothers during gestation as well as lactation to achieve the optimum brain LC-PUFA status of progeny. © The Author(s) 2013.
CITATION STYLE
Ranade, P. S., & Rao, S. S. (2013). Maternal long-chain PUFA supplementation during protein deficiency improves brain fatty acid accretion in rat pups by altering the milk fatty acid composition of the dam. Journal of Nutritional Science, 2, 1–8. https://doi.org/10.1017/jns.2012.25
Mendeley helps you to discover research relevant for your work.