Microbial rhodopsins are a superfamily of photoactive membrane proteins with the covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the ‘3 omega motif.’ This motif forms a stack of three non-consecutive aromatic amino acids that correlates with the B–C loop orientation and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium-pumping rhodopsin, the NTQ motif-containing chloride-pumping rhodopsin, and some proton-pumping rhodopsins including xanthorhodopsin. Here, we reviewed the recent research progress on these ‘omega rhodopsins,’ and speculated on their evolutionary origin of functional diversity.
CITATION STYLE
Kwon, S. K., Jun, S. H., & Kim, J. F. (2020, May 28). Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins. Journal of Microbiology and Biotechnology. Korean Society for Microbiolog and Biotechnology. https://doi.org/10.4014/jmb.1912.12010
Mendeley helps you to discover research relevant for your work.