The endosomal innate receptor CD158d (killer cell Ig-like receptor 2DL4) induces cellular senescence in human NK cells in response to soluble ligand (HLA-G or agonist Ab). These senescent NK cells display a senescence-associated secretory phenotype, and their secretome promotes vascular remodeling and angiogenesis. To understand how CD158d initiates signaling for a senescence response, we mapped the region in its cytoplasmic tail that controls signaling. We identified a conserved TNFR-associated factor 6 (TRAF6) binding motif, which was required for CD158d-induced NF-κB activation and IL-8 secretion, TRAF6 association with CD158d, and TRAF6 recruitment to CD158d+ endosomes in transfected cells. The adaptor TRAF6 is known to couple proximal signals from receptors such as endosomal TLRs and CD40 through the kinase TGF-β–activated kinase 1 (TAK1) for NF-κB–dependent proinflammatory responses. Small interfering RNA–mediated silencing of TRAF6 and TAK1, and inhibition of TAK1 blocked CD158d-dependent IL-8 secretion. Stimulation of primary, resting NK cells with soluble Ab to CD158d induced TRAF6 association with CD158d, induced TAK1 phosphorylation, and inhibition of TAK1 blocked the CD158d-dependent reprogramming of NK cells that produces the senescence-associated secretory phenotype signature. Our results reveal that a prototypic TLR and TNFR signaling pathway is used by a killer cell Ig-like receptor that promotes secretion of proinflammatory and proangiogenic mediators as part of a unique senescence phenotype in NK cells.
CITATION STYLE
Rajagopalan, S., Lee, E. C., DuPrie, M. L., & Long, E. O. (2014). TNFR-Associated Factor 6 and TGF-β–Activated Kinase 1 Control Signals for a Senescence Response by an Endosomal NK Cell Receptor. The Journal of Immunology, 192(2), 714–721. https://doi.org/10.4049/jimmunol.1302384
Mendeley helps you to discover research relevant for your work.