Layered learning

98Citations
Citations of this article
71Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper presents layered learning, a hierarchical machine learning paradigm. Layered learning applies to tasks for which learning a direct mapping from inputs to outputs is intractable with existing learning algorithms. Given a hierarchical task decomposition into subtasks, layered learning seamlessly integrates separate learning at each subtask layer. The learning of each subtask directly facilitates the learning of the next higher subtask layer by determining at least one of three of its components: (i) the set of training examples; (ii) the input representation; and/or (iii) the output representation. We introduce layered learning in its domain-independent general form. We then present a full implementation in a complex domain, namely simulated robotic soccer.

References Powered by Scopus

Reinforcement learning: A survey

6078Citations
N/AReaders
Get full text

Stacked generalization

5947Citations
N/AReaders
Get full text

The Strength of Weak Learnability

3624Citations
N/AReaders
Get full text

Cited by Powered by Scopus

An introduction to deep reinforcement learning

901Citations
N/AReaders
Get full text

Human-level performance in 3D multiplayer games with population-based reinforcement learning

496Citations
N/AReaders
Get full text

Character Recognition Systems: A Guide for Students and Practioners

232Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Stone, P., & Veloso, M. (2000). Layered learning. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 1810, pp. 369–381). Springer Verlag. https://doi.org/10.1007/3-540-45164-1_38

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 38

63%

Professor / Associate Prof. 9

15%

Researcher 9

15%

Lecturer / Post doc 4

7%

Readers' Discipline

Tooltip

Computer Science 41

68%

Engineering 13

22%

Agricultural and Biological Sciences 4

7%

Business, Management and Accounting 2

3%

Save time finding and organizing research with Mendeley

Sign up for free