Fuel Oil Production from Two-Stage Pyrolysis-Catalytic Reforming of Brominated High Impact Polystyrene Using Zeolite and Iron Oxide Loaded Zeolite Catalysts

  • Wu H
  • Shen Y
  • Ma D
  • et al.
N/ACitations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

The experiments of two-stage pyrolysis and catalytic reforming of high impact polystyrene (HIPS) containing brominated flame retardants and antimony trioxide (Sb2O3) were conducted in the presence of four zeolite catalysts in order to remove the bromine content from the derived oil products. The four catalysts used were natural zeolite (NZ), iron oxide loaded natural zeolite (Fe-NZ), HY zeolite (YZ) and iron oxide loaded HY zeolite (Fe-NZ). The effect of catalyst types on the product yield, the gas and oil product composition and the debromination efficiency of the oil products was evaluated in details. The results showed that the loading of iron oxides reduced the pore size and surface areas of natural zeolite and HY zeolite. Regardless of the presence of catalysts, the single-ring aromatic compounds were the main components of the oil products, such as ethylbenzene, toluene, styrene and cumene. Meanwhile, when YZ and Fe-YZ were used, the two-ring and multi-ring aromatic compounds in the oils, as well as the yield of gas products, significantly increased at the expense of valuable single-ring aromatic compounds. Furthermore, in terms of the debromination performance of the oil products, Fe-NZ and Fe-YZ were better than NZ and YZ, duo to the loading of iron oxide, which could react with derived HBr and then remove more bromine from the oil products.

Cite

CITATION STYLE

APA

Wu, H., Shen, Y., Ma, D., An, Q., Harada, N., & Yoshikawa, K. (2015). Fuel Oil Production from Two-Stage Pyrolysis-Catalytic Reforming of Brominated High Impact Polystyrene Using Zeolite and Iron Oxide Loaded Zeolite Catalysts. Open Journal of Ecology, 05(04), 136–146. https://doi.org/10.4236/oje.2015.54012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free