Q fever is a worldwide zoonosis caused by Coxiella burnetii. The disease most frequently manifests clinically as a self-limited febrile illness, as pneumonia (acute Q fever) or as a chronic illness that presents mainly as infective endocarditis. The extreme infectivity of the bacterium results in large outbreaks, and the recent outbreak in the Netherlands underlines its impact on public health. Recent studies on the bacterium have included genome sequencing, the investigation of host-bacterium interactions, the development of cellular and animal models of infection, and the comprehensive analysis of different clinical isolates by whole genome and proteomic approaches. Current approaches for diagnosing Q fever are based on serological methods and PCR techniques, but the diagnosis of early stage disease lacks specificity and sensitivity. Consequently, different platforms have been created to explore Q fever biomarkers. Several studies using a combination of proteomics and recombinant protein screening approaches have been undertaken for the development of diagnostics and vaccines. In this review, we highlight advances in the field of C. burnetii proteomics, focusing mainly on the contribution of these technologies to the development and improvement of Q fever diagnostics.
CITATION STYLE
Kowalczewska, M., Sekeyová, Z., & Raoult, D. (2011). Proteomics paves the way for Q fever diagnostics. Genome Medicine, 3(7). https://doi.org/10.1186/gm266
Mendeley helps you to discover research relevant for your work.