Emergent Multi-Flavor QED3 at the Plateau Transition between Fractional Chern Insulators: Applications to Graphene Heterostructures

30Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Recent experiments in graphene heterostructures have observed Chern insulators - integer and fractional quantum Hall states made possible by a periodic substrate potential. Here, we study theoretically that the competition between different Chern insulators, which can be tuned by the amplitude of the periodic potential, leads to a new family of quantum critical points described by QED3-Chern-Simons theory. At these critical points, Nf flavors of Dirac fermions interact through an emergent U(1) gauge theory at Chern-Simons level K, and remarkably, the entire family (with any Nf or K) can be realized at special values of the external magnetic field. Transitions between particle-hole conjugate Jain states realize "pure" QED3, in which multiple flavors of Dirac fermions interact with a Maxwell U(1) gauge field. The multiflavor nature of the critical point leads to an emergent SU(Nf) symmetry. Specifically, at the transition from a ν=1/3 to 2/3 quantum Hall state, the emergent SU(3) symmetry predicts an octet of charge density waves with enhanced susceptibilities, which is verified by DMRG numerical simulations on microscopic models applicable to graphene heterostructures. We propose experiments on Chern insulators that could resolve open questions in the study of (2+1)-dimensional conformal field theories and test recent duality inspired conjectures.

Cite

CITATION STYLE

APA

Lee, J. Y., Wang, C., Zaletel, M. P., Vishwanath, A., & He, Y. C. (2018). Emergent Multi-Flavor QED3 at the Plateau Transition between Fractional Chern Insulators: Applications to Graphene Heterostructures. Physical Review X, 8(3). https://doi.org/10.1103/PhysRevX.8.031015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free