Variation in the autism candidate gene GABRB3 modulates tactile sensitivity in typically developing children

32Citations
Citations of this article
78Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Autism spectrum conditions have a strong genetic component. Atypical sensory sensitivities are one of the core but neglected features of autism spectrum conditions. GABRB3 is a well-characterised candidate gene for autism spectrum conditions. In mice, heterozygous Gabrb3 deletion is associated with increased tactile sensitivity. However, no study has examined if tactile sensitivity is associated with GABRB3 genetic variation in humans. To test this, we conducted two pilot genetic association studies in the general population, analysing two phenotypic measures of tactile sensitivity (a parent-report and a behavioural measure) for association with 43 SNPs in GABRB3. Findings: Across both tactile sensitivity measures, three SNPs (rs11636966, rs8023959 and rs2162241) were nominally associated with both phenotypes, providing a measure of internal validation. Parent-report scores were nominally associated with six SNPs (P ≥0.05). Behaviourally measured tactile sensitivity was nominally associated with 10 SNPs (three after Bonferroni correction). Conclusions: This is the first human study to show an association between GABRB3 variation and tactile sensitivity. This provides support for the evidence from animal models implicating the role of GABRB3 variation in the atypical sensory sensitivity in autism spectrum conditions. Future research is underway to directly test this association in cases of autism spectrum conditions. © 2012 Tavassoli et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Tavassoli, T., Auyeung, B., Murphy, L. C., Baron-Cohen, S., & Chakrabarti, B. (2012). Variation in the autism candidate gene GABRB3 modulates tactile sensitivity in typically developing children. Molecular Autism, 3(1). https://doi.org/10.1186/2040-2392-3-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free