Biological P cycling is influenced by the form of P fertilizer in an Oxisol

34Citations
Citations of this article
61Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Phosphate rock (PR) is an alternative fertilizer to increase the P content of P-deficient weathered soils. We evaluated the effects of fertilizer form on indicators of biological cycling of P using an on-farm trial on a Rhodic Kandiudox in western Kenya. Treatment plots were sampled after 13 cropping seasons of P applications as Minjingu phosphate rock (PR) or as triple super phosphate (TSP) (50 kg P ha−1 season−1), as well as a P-unfertilized control (0 kg P ha−1 season−1). Soils (0–15 and 15–30 cm) were analyzed for microbial biomass P (Pmic), activities of acid phosphomonoesterase, alkaline phosphomonoesterase, and phosphodiesterase, and sequentially extractable P fractions. P additions as Minjingu PR yielded 299% greater Pmic than TSP at 0–15-cm depth despite similar labile P concentrations in the two P fertilization treatments and stimulated activities of acid phosphomonoesterase (+39%). When added in the soluble form of TSP, a greater percentage of total soil P was present in mineral-bound forms (+33% Fe- and Al-associated P). Higher soil pH under Minjingu PR (pH 5.35) versus TSP (pH 5.02) and the P-unfertilized treatment (pH 4.69) at 0–15-cm depth reflected a liming effect of Minjingu PR. The form of P fertilizer can influence biological P cycling in weathered soils, potentially improving P availability under Minjingu PR relative to TSP via enhanced microbial biomass P and enzymatic drivers of P cycling.

Cite

CITATION STYLE

APA

Margenot, A. J., Sommer, R., Mukalama, J., & Parikh, S. J. (2017). Biological P cycling is influenced by the form of P fertilizer in an Oxisol. Biology and Fertility of Soils, 53(8), 899–909. https://doi.org/10.1007/s00374-017-1226-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free