Based on the empirical path set generated from the track data of dangerous goods vehicles, we present a new method for the risk analysis and path optimization of dangerous goods transportation. First of all, by exploring the travel rules of dangerous goods transport vehicles hidden in the track data, combined with the path set generation algorithm, the method of determining the empirical path set of dangerous goods transport is studied. Secondly, based on the empirical path set, mainly considering the travel rules of vehicles and people on the road, as well as the distribution of population and environment-sensitive areas along the road, a dual objective path selection model is proposed to comprehensively measure the risk and cost of road transportation under time-varying conditions. On this basis, given the principle of avoiding high-risk transportation paths, a comprehensive method of integrating multiple algorithms is proposed to solve the model. Finally, taking a road network as an example, the practicability and effectiveness of the proposed method are verified. The method proposed takes both practicability and safety into account. Based on the experience path set, considering the time-varying characteristics, the decision-maker could choose the appropriate transportation path of dangerous goods according to different preferences, so as to better solve the problem of path selection for dangerous goods transportation.
CITATION STYLE
Wang, H., & Liang, Q. (2020). Risk Analysis and Route Optimization of Dangerous Goods Transportation Based on the Empirical Path Set. Journal of Advanced Transportation, 2020. https://doi.org/10.1155/2020/8838692
Mendeley helps you to discover research relevant for your work.