Maximal Digital Straight Segments and convergence of discrete geometric estimators

14Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Discrete geometric estimators approach geometric quantities on digitized shapes without any knowledge of the continuous shape. A classical yet difficult problem is to show that an estimator asymptotically converges toward the true geometric quantity as the resolution increases. We study here the convergence of local estimators based on Digital Straight Segment (DSS) recognition. It is closely linked to the asymptotic growth of maximal DSS, for which we show bounds both about their number and sizes. These results not only give better insights about digitized curves but indicate that curvature estimators based on local DSS recognition are not likely to converge. We indeed invalidate an hypothesis which was essential in the only known convergence theorem of a discrete curvature estimator. The proof involves results from arithmetic properties of digital lines, digital convexity, combinatorics, continued fractions and random polytopes. © Springer-Verlag Berlin Heidelberg 2005.

Cite

CITATION STYLE

APA

De Vieilleville, F., Lachaud, J. O., & Feschet, F. (2005). Maximal Digital Straight Segments and convergence of discrete geometric estimators. In Lecture Notes in Computer Science (Vol. 3540, pp. 988–997). Springer Verlag. https://doi.org/10.1007/11499145_100

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free