Memanfaatkan teknologi dalam pendidikan bisa membantu kita agar lebih efektif dari segi tenaga maupun waktu. Pilihan strategi pembelajaran yang tepat, termasuk referensi strategi pembelajaran, merupakan langkah penting dalam perancangan kurikulum di tingkat akademik. Efektivitasnya berpengaruh pada bagaimana metode pengajaran dan pendekatan pembelajaran yang relevan memfasilitasi pemahaman. Penelitian menggunakan dataset dengan atribut nilai dalam mata kuliah yang pernah di tempuh mahasiswa yaitu Pns, Alpro 1, Alpro 2, Diskrit, PBO, dan Aljabar yang memengaruhi keputusan dan melibatkan proses pelatihan model Naive Bayes Dan bisa berpotensi memengaruhi keputusan. Oleh karena itu Metode Naїve Bayes akan diimplementasikan untuk memodelkan hubungan probabilistik antara atribut dan kelas keputusan. Hasil penelitian ini diharapkan dapat memberikan wawasan praktis dengan berbasis aplikasi Android. Algoritma memiliki nilai evaluasi 90% accuracy, 1 recall, 89% precision, dan skor F1-0,67, dengan nilai tersebut maka Hasil penelitian ini menunjukkan bahwa algoritma Naive Bayes dapat membuat prediksi kelulusan dalam mata kuliah data mining dengan kinerja yang baik.
CITATION STYLE
Firdiansyah, A., Ikrom, I. A., Khamdanni, Moh., & Utomo, W. C. (2024). Pemanfaatan Data Mining Untuk Memprediksi Kelulusan Mata Kuliah dan Referensi Strategi Pembelajaran. Seminar Nasional Teknologi & Sains, 3(1), 338–344. https://doi.org/10.29407/stains.v3i1.4338
Mendeley helps you to discover research relevant for your work.