Absorption current is an important characteristic of polymers with regard to their time-domain response to a direct current (DC) poling field. This is because the results of absorption current measurements can be used to gain understanding of the relationship between space charge accumulation and movement. In semicrystalline polyethylene, for example, charge accumulation is likely to be influenced by the presence of charge trapping sites, which are associated with interfaces between the crystalline and amorphous phases. With the addition of a nanofiller, the charge transport mechanism will become more complicated than in the unfilled polymer, as the inclusion of the nanofiller will introduce nanofiller/polymer interfaces. The presence of such interfaces will affect the current flow due to the introduction or modification of the distribution of trapping sites within the system. In this paper, we report on an investigation into the absorption current behaviour of polyethylene nanocomposites containing 0 wt%, 2 wt%, 5 wt% and 10 wt% of silica nanofiller, either untreated or treated using trimethoxy(propyl)silane coupling agent. Our results indicate that the absorption current behaviour of the polyethylene was affected by the presence of the nanosilica. While the current behaviour through the unfilled polymer decreases with time in a conventional manner, all nanocomposites reveal an initial decrease followed by a period in which the current increases with increasing time of DC field application. © Published under licence by IOP Publishing Ltd.
CITATION STYLE
Lau, K. Y., Vaughan, A. S., Chen, G., Hosier, I. L., & Holt, A. F. (2013). Absorption current behaviour of polyethylene/silica nanocomposites. In Journal of Physics: Conference Series (Vol. 472). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/472/1/012003
Mendeley helps you to discover research relevant for your work.