A multi-period product recommender system in online food market based on recurrent neural networks

29Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

Abstract

A recommender system supports customers to find information, products, or services (such as music, books, movies, web sites, and digital contents), so it could help customers to make rapid routine decisions and save their time and money. However, most existing recommender systems do not recommend items that are already purchased by the target customer, so are not suitable for considering customers' repetitive purchase behavior or purchasing order. In this research, we suggest a multi-period product recommender system, which can learn customers' purchasing order and customers' repetitive purchase pattern. For such a purpose we applied the Recurrent Neural Network (RNN), which is one of the artificial neural network structures specialized in time series data analysis, instead of collaborative filtering techniques. Recommendation periods are segmented as various time-steps, and the proposed RNN-based recommender system can recommend items by multiple periods in a time sequence. Several experiments with real online food market data show that the proposed system shows higher performance in accuracy and diversity in a multi-period perspective than the collaborative filtering-based system. From the experimental results, we conclude that the proposed system is suitable for multi-period product recommendation, which results in robust performance considering well customers' purchasing orders and customers' repetitive purchase patterns. Moreover, in terms of sustainability, we expect that our study contributes to the reduction of food wastes by inducing planned consumption, and the reduction of shopping time and effort.

Cite

CITATION STYLE

APA

Lee, H. I., Choi, I. Y., Moon, H. S., & Kim, J. K. (2020). A multi-period product recommender system in online food market based on recurrent neural networks. Sustainability (Switzerland), 12(3). https://doi.org/10.3390/su12030969

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free