A fast and accurate quantization noise estimator aiming at fixed-point implementations of Digital Signal Processing (DSP) algorithms is presented. The estimator enables significant reduction in the computation time required to perform complex word-length optimizations. The proposed estimator is based on the use of Affine Arithmetic (AA) and it is presented in two versions: (i) a general version suitable for differentiable nonlinear algorithms, and Linear Time-Invariant (LTI) algorithms with and without feedbacks; and (ii) an LTI optimized version. The process relies on the parameterization of the statistical properties of the noise at the output of fixed-point algorithms. Once the output noise is parameterized (i.e., related to the fixed-point formats of the algorithm signals), a fast estimation can be applied throughout the word-length optimization process using as a precision metric the Signal-to-Quantization Noise Ratio (SQNR). The estimator is tested using different LTI filters and transforms, as well as a subset of non-linear operations, such as vector operations, adaptive filters, and a channel equalizer. Fixed-point optimization times are boosted by three orders of magnitude while keeping the average estimation error down to 4. Copyright © 2010 Gabriel Caffarena et al.
CITATION STYLE
Caffarena, G., Carreras, C., Lpez, J. A., & Fernández, Á. (2010). SQNR estimation of fixed-point DSP algorithms. Eurasip Journal on Advances in Signal Processing, 2010. https://doi.org/10.1155/2010/171027
Mendeley helps you to discover research relevant for your work.