Colloidal Mn-doped ZnSe/CdS core/shell quantum dots (QDs) are synthesized for the first time and employed as a strategy to boost the power conversion efficiency of quantum dot sensitized solar cells. By using Mn-doping as a band gap engineering tool for core/shell QDs an effective improvement of absorption spectra could be obtained. The mid-states generated by a proper Mn content alleviate carrier separation and enhance the electron injection rate, thus facilitating electron transport to the TiO2 substrate. It is demonstrated that a device constructed with 0.25% Mn-doped ZnSe/CdS leads to an enhancement of the electron injection rate and power conversion efficiency by 4 times and 1.3, respectively.
CITATION STYLE
Jamshidi, A., Yuan, C., Chmyrov, V., Widengren, J., Sun, L., & �gren, H. (2015). Efficiency Enhanced Colloidal Mn-Doped Type II Core/Shell ZnSe/CdS Quantum Dot Sensitized Hybrid Solar Cells. Journal of Nanomaterials, 2015. https://doi.org/10.1155/2015/921903
Mendeley helps you to discover research relevant for your work.