Granulocyte colony-stimulating factor (G-CSF) is the principal cytokine regulating granulopoiesis. G-CSF receptor-deficient mice (G-CSFR-/-) are neutropenic but have only a modest reduction of committed myeloid progenitors. Since it is likely that compensatory mechanisms are induced by the severe neutropenia present in G-CSFR-/- mice, a competitive repopulation assay was performed. These data show that under basal conditions, G-CSF drives nearly all of granulopoiesis through multiple mechanisms. Most importantly, G-CSFR signals regulate the production and/or maintenance of committed-myeloid progenitors. Surprisingly, G-CSFR signals also play a significant role in the regulation of primitive multipotential progenitors in vivo. The contribution of G-CSFR-/- cells to the hematopoietic stem cell compartment is modestly reduced. Moreover, a marked decrease in the contribution of G-CSFR-/- cells to other progenitors in the myeloid pathway, including erythroid and megakaryocytic progenitors, is observed. In contrast, relative to the hematopoietic stem cell compartment, the contribution of G-CSFR-/- cells to the lymphoid lineages is increased. These data suggest that G-CSFR signals may play a role in directing the commitment of primitive hematopoietic progenitors to the common myeloid lineage. Thus, regulation of G-CSF levels may provide a mechanism for directing primitive hematopoietic progenitors into the common myeloid lineage in response to environmental stresses. © 2003 by The American Society of Hematology.
CITATION STYLE
Richards, M. K., Liu, F., Iwasaki, H., Akashi, K., & Link, D. C. (2003). Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood, 102(10), 3562–3568. https://doi.org/10.1182/blood-2003-02-0593
Mendeley helps you to discover research relevant for your work.