The widely accepted idea that bees fuel flight through the oxidation of carbohydrate is based on studies of only a few species. We tested this hypothesis as part of our research program to investigate the size-dependence of flight energetics in Panamanian orchid bees. We succeeded in measuring rates of O2 consumption and CO2 production in vivo during hovering flight, as well as maximal activities (Vmax values) in vitro of key enzymes in flight muscle energy metabolism in nine species belonging to four genera. Respiratory quotients (ratios of rates of CO2 production to O2 consumption) in all nine species are close to 1.0. This indicates that carbohydrate is the main fuel used for flight. Trehalase, glycogen phosphorylase and hexokinase activities are sufficient to account for the glycolytic flux rates estimated from rates of CO2 production. High activities of other glycolytic enzymes, as well as high activities of mitochondrial oxidative enzymes, are consistent with the estimated rates of carbohydrate-fueled oxidative metabolism. In contrast, hydroxyacylCoA dehydrogenase, an enzyme involved in fatty acid oxidation, was not detectable in any species. Thoracic homogenates displayed ADP-stimulated oxidition of pyruvate + proline, but did not oxidize palmitoyl L-carnitine + proline as substrates. A metabolic map, based on data reported herein and information from the literature, is presented. The evidence available supports the hypothesis that carbohydrate serves as the main fuel for flight in bees.
CITATION STYLE
Suarez, R. K., Darveau, C. A., Welch, K. C., O’Brien, D. M., Roubik, D. W., & Hochachka, P. W. (2005). Energy metabolism in orchid bee flight muscles: Carbohydrate fuels all. Journal of Experimental Biology, 208(18), 3573–3579. https://doi.org/10.1242/jeb.01775
Mendeley helps you to discover research relevant for your work.