d,l-Methadone causes leukemic cell apoptosis via an OPRM1-triggered increase in IP3R-mediated ER Ca2+ release and decrease in Ca2+ efflux, elevating [Ca2+]i

12Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The search continues for improved therapy for acute lymphoblastic leukemia (aLL), the most common malignancy in children. Recently, d,l-methadone was put forth as sensitizer for aLL chemotherapy. However, the specific target of d,l-methadone in leukemic cells and the mechanism by which it induces leukemic cell apoptosis remain to be defined. Here, we demonstrate that d,l-methadone induces leukemic cell apoptosis through activation of the mu1 subtype of opioid receptors (OPRM1). d,l-Methadone evokes IP3R-mediated ER Ca2+ release that is inhibited by OPRM1 loss. In addition, the rate of Ca2+ extrusion following d,l-methadone treatment is reduced, but is accelerated by loss of OPRM1. These d,l-methadone effects cause a lethal rise in [Ca2+]i that is again inhibited by OPRM1 loss, which then prevents d,l-methadone-induced apoptosis that is associated with activation of calpain-1, truncation of Bid, cytochrome C release, and proteolysis of caspase-3/12. Chelating intracellular Ca2+ with BAPTA-AM reverses d,l-methadone-induced apoptosis, establishing a link between the rise in [Ca2+]i and d,l-methadone-induced apoptosis. Altogether, our findings point to OPRM1 as a specific target of d,l-methadone in leukemic cells, and that OPRM1 activation by d,l-methadone disrupts IP3R-mediated ER Ca2+ release and rate of Ca2+ efflux, causing a rise in [Ca2+]i that upregulates the calpain-1-Bid-cytochrome C-caspase-3/12 apoptotic pathway.

Cite

CITATION STYLE

APA

Lee, J. K., Rosales, J. L., Byun, H. G., & Lee, K. Y. (2021). d,l-Methadone causes leukemic cell apoptosis via an OPRM1-triggered increase in IP3R-mediated ER Ca2+ release and decrease in Ca2+ efflux, elevating [Ca2+]i. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-80520-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free