Synthesis and Molecular Docking Study of Novel Pyrimidine Derivatives against COVID-19

16Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

A novel series of pyrido[2,3-d]pyrimidines; pyrido[3,2-e][1,3,4]triazolo; and tetrazolo[1,5-c]pyrimidines were synthesized via different chemical transformations starting from pyrazolo[3,4-b]pyridin-6-yl)-N,N-dimethylcarbamimidic chloride 3b (prepared from the reaction of o-aminonitrile 1b and phosogen iminiumchloride). The structures of the newly synthesized compounds were elucidated based on spectroscopic data and elemental analyses. Designated compounds are subjected for molecular docking by using Auto Dock Vina software in order to evaluate the antiviral potency for the synthesized compounds against SARS-CoV-2 (2019-nCoV) main protease M pro. The antiviral activity against SARS-CoV-2 showed that tested compounds 7c, 7d, and 7e had the most promising antiviral activity with lower IC50 values compared to Lopinavir, “the commonly used protease inhibitor”. Both in silico and in vitro results are in agreement.

Cite

CITATION STYLE

APA

Alamshany, Z. M., Khattab, R. R., Hassan, N. A., El-Sayed, A. A., Tantawy, M. A., Mostafa, A., & Hassan, A. A. (2023). Synthesis and Molecular Docking Study of Novel Pyrimidine Derivatives against COVID-19. Molecules, 28(2). https://doi.org/10.3390/molecules28020739

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free