Evaluating convolutional neural networks for cage-free floor egg detection

26Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

The manual collection of eggs laid on the floor (or ‘floor eggs’) in cage-free (CF) laying hen housing is strenuous and time-consuming. Using robots for automatic floor egg collection offers a novel solution to reduce labor yet relies on robust egg detection systems. This study sought to develop vision-based floor-egg detectors using three Convolutional Neural Networks (CNNs), i.e., single shot detector (SSD), faster region-based CNN (faster R-CNN), and region-based fully convolutional network (R-FCN), and evaluate their performance on floor egg detection under simulated CF environments. The results show that the SSD detector had the highest precision (99.9 ± 0.1%) and fastest processing speed (125.1 ± 2.7 ms·image−1) but the lowest recall (72.1 ± 7.2%) and accuracy (72.0 ± 7.2%) among the three floor-egg detectors. The R-FCN detector had the slowest processing speed (243.2 ± 1.0 ms·image−1) and the lowest precision (93.3 ± 2.4%). The faster R-CNN detector had the best performance in floor egg detection with the highest recall (98.4 ± 0.4%) and accuracy (98.1 ± 0.3%), and a medium prevision (99.7 ± 0.2%) and image processing speed (201.5 ± 2.3 ms·image−1); thus, the faster R-CNN detector was selected as the optimal model. The faster R-CNN detector performed almost perfectly for floor egg detection under a wide range of simulated CF environments and system settings, except for brown egg detection at 1 lux light intensity. When tested under random settings, the faster R-CNN detector had 91.9–94.7% precision, 99.8–100.0% recall, and 91.9–94.5% accuracy for floor egg detection. It is concluded that a properly-trained CNN floor-egg detector may accurately detect floor eggs under CF housing environments and has the potential to serve as a crucial vision-based component for robotic floor egg collection systems.

Cite

CITATION STYLE

APA

Li, G., Xu, Y., Zhao, Y., Du, Q., & Huang, Y. (2020). Evaluating convolutional neural networks for cage-free floor egg detection. Sensors (Switzerland), 20(2). https://doi.org/10.3390/s20020332

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free