Influences of Plasma Plume Length on Structural, Optical and Dye Degradation Properties of Citrate-Stabilized Silver Nanoparticles Synthesized by Plasma-Assisted Reduction

32Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Citrate-capped silver nanoparticles (Ag@Cit NPs) were synthesized by a simple plasma-assisted reduction method. Homogenous colloidal Ag@Cit NPs solutions were produced by treating a (Formula presented.) -trisodium citrate-deionized water with an atmospheric-pressure argon plasma jet. The plasma-synthesized Ag@Cit NPs exhibited quasi-spherical shape with an average particle diameter of about 5.9−7.5 nm, and their absorption spectra showed surface plasmon resonance peaks at approximately 406 nm. The amount of Ag@Cit NPs increased in a plasma exposure duration-dependent manner. Plasma synthesis of Ag@Cit NPs was more effective in the 8.5 cm plume jet than in the shorter and longer plume jets. A larger amount of Ag@Cit NPs were produced from the 8.5 cm plume jet with a higher pH and a larger number of aqua electrons, indicating that the synergetic effect between plasma electrons and citrate plays an important role in the plasma synthesis of Ag@Cit NPs. Plasma-assisted citrate reduction facilitates the synthesis of Ag@Cit NPs, and citrate-capped nanoparticles are stabilized in an aqueous solution due to their repulsive force. Next, we demonstrated that plasma-synthesized Ag@Cit NPs exhibited a significant degradation of methylene blue dye.

Cite

CITATION STYLE

APA

Acharya, T. R., Lee, G. J., & Choi, E. H. (2022). Influences of Plasma Plume Length on Structural, Optical and Dye Degradation Properties of Citrate-Stabilized Silver Nanoparticles Synthesized by Plasma-Assisted Reduction. Nanomaterials, 12(14). https://doi.org/10.3390/nano12142367

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free