Visual Question Answering (VQA) is a fundamental task in computer vision and natural language process fields. Although the “pre-training & finetuning” learning paradigm significantly improves the VQA performance, the adversarial robustness of such a learning paradigm has not been explored. In this paper, we delve into a new problem: using a pre-trained multimodal source model to create adversarial image-text pairs and then transferring them to attack the target VQA models. Correspondingly, we propose a novel VQATTACK model, which can iteratively generate both image and text perturbations with the designed modules: the large language model (LLM)-enhanced image attack and the cross-modal joint attack module. At each iteration, the LLM-enhanced image attack module first optimizes the latent representation-based loss to generate feature-level image perturbations. Then it incorporates an LLM to further enhance the image perturbations by optimizing the designed masked answer anti-recovery loss. The cross-modal joint attack module will be triggered at a specific iteration, which updates the image and text perturbations sequentially. Notably, the text perturbation updates are based on both the learned gradients in the word embedding space and word synonym-based substitution. Experimental results on two VQA datasets with five validated models demonstrate the effectiveness of the proposed VQATTACK in the transferable attack setting, compared with state-of-the-art baselines. This work reveals a significant blind spot in the “pre-training & fine-tuning” paradigm on VQA tasks. The source code can be found in the link https://github.com/ericyinyzy/VQAttack.
CITATION STYLE
Yin, Z., Ye, M., Zhang, T., Wang, J., Liu, H., Chen, J., … Ma, F. (2024). VQAttack: Transferable Adversarial Attacks on Visual Question Answering via Pre-trained Models. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, pp. 6755–6763). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v38i7.28499
Mendeley helps you to discover research relevant for your work.