Mathematical modeling, analysis, and simulation of the COVID-19 pandemic with explicit and implicit behavioral changes

6Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

As COVID-19 cases continue to rise globally, many researchers have developed mathematical models to help capture the dynamics of the spread of COVID-19. Specifically, the compartmental SEIR model and its variations have been widely employed. These models differ in the type of compartments included, nature of the transmission rates, seasonality, and several other factors. Yet, while the spread of COVID-19 is largely attributed to a wide range of social behaviors in the population, several of these SEIR models do not account for such behaviors. In this project, we consider novel SEIR-based models that incorporate various behaviors. We created a baseline model and explored incorporating both explicit and implicit behavioral changes. Furthermore, using the Next Generation Matrix method, we derive a basic reproduction number, which indicates the estimated number of secondary cases by a single infected individual. Numerical simulations for the various models we made were performed and user-friendly graphical user interfaces were created. In the future, we plan to expand our project to account for the use of face masks, age-based behaviors and transmission rates, and mixing patterns.

References Powered by Scopus

A novel coronavirus outbreak of global health concern

5442Citations
N/AReaders
Get full text

On the definition and the computation of the basic reproduction ratio R<inf>0</inf> in models for infectious diseases in heterogeneous populations

3745Citations
N/AReaders
Get full text

Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)

2412Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Stochastic modeling, analysis, and simulation of the COVID-19 pandemic with explicit behavioral changes in Bogotá: A case study

25Citations
N/AReaders
Get full text

Modeling, Analysis and Physics Informed Neural Network approaches for studying the dynamics of COVID-19 involving human-human and human-pathogen interaction

19Citations
N/AReaders
Get full text

Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach

17Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Ohajunwa, C., Kumar, K., & Seshaiyer, P. (2020). Mathematical modeling, analysis, and simulation of the COVID-19 pandemic with explicit and implicit behavioral changes. Computational and Mathematical Biophysics, 8(1), 216–232. https://doi.org/10.1515/cmb-2020-0113

Readers' Seniority

Tooltip

Professor / Associate Prof. 1

50%

PhD / Post grad / Masters / Doc 1

50%

Readers' Discipline

Tooltip

Mathematics 1

100%

Save time finding and organizing research with Mendeley

Sign up for free