From genetical genomics to systems genetics: Potential applications in quantitative genomics and animal breeding

71Citations
Citations of this article
142Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This article reviews methods of integration of transcriptomics (and equally proteomics and metabolomics), genetics, and genomics in the form of systems genetics into existing genome analyses and their potential use in animal breeding and quantitative genomic modeling of complex traits. Genetical genomics or the expression quantitative trait loci (eQTL) mapping method and key findings in this research are reviewed. Various procedures and potential uses of eQTL mapping, global linkage clustering, and systems genetics are illustrated using actual analysis on recombinant inbred lines of mice with data on gene expression (for diabetes- and obesity-related genes), pathway, and single nucleotide polymorphism (SNP) linkage maps. Experimental and bioinformatics difficulties and possible solutions are discussed. The main uses of this systems genetics approach in quantitative genomics were shown to be in refinement of the identified QTL, candidate gene and SNP discovery, understanding gene-environment and gene-gene interactions, detection of candidate regulator genes/eQTL, discriminating multiple QTL/eQTL, and detection of pleiotropic QTL/eQTL, in addition to its use in reconstructing regulatory networks. The potential uses in animal breeding are direct selection on heritable gene expression measures, termed "expression assisted selection," and genetical genomic selection of both QTL and eQTL based on breeding values of the respective genes, termed "expression-assisted evaluation." © 2006 Springer Science+Business Media, Inc.

Cite

CITATION STYLE

APA

Kadarmideen, H. N., Von Rohr, P., & Janss, L. L. G. (2006, June). From genetical genomics to systems genetics: Potential applications in quantitative genomics and animal breeding. Mammalian Genome. https://doi.org/10.1007/s00335-005-0169-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free