Uncovering the value of waste materials is one of the keys to sustainability. In this current work, valorization of chitosan was pursued to fabricate a novel modified chitosan functional hydrogel using a process-efficient protocol. The fabrication proceeds by a one-pot and single-step C-Mannich condensation of chitosan (3% w/v), glutaraldehyde (20 eq.), and 4-hydroxycoumarin (40 eq.) at 22 °C in 3% v/v acetic acid. The Mannich base modified chitosan hydrogel (CS-MB) exhibits a dual-responsive swelling behavior in response to pH and temperature that has not been observed in any other hydrogel systems. Combining the pre-defined optimal swelling pH (pH = 4) and temperature (T = 22 °C), the CS-MB was screened for its Cu2+ adsorption capacity at this condition. The CS-MB achieved an optimal adsorption capacity of 12.0 mg/g with 1.2 g/L adsorbent dosage after 36 h with agitation. The adsorption of Cu2+ on the surface of CS-MB was verified by EDS, and an overview of the adsorption sites was exhibited by FT-IR. The simply fabricated novel CS-MB hydrogel under investigation presents a unique response to external stimuli that exhibits a promise in heavy metal removal from aqueous media.
CITATION STYLE
Romal, J. R. A., & Ong, S. K. (2023). Single-Step Fabrication of a Dual-Sensitive Chitosan Hydrogel by C-Mannich Reaction: Synthesis, Physicochemical Properties, and Screening of its Cu2+ Uptake. Processes, 11(2). https://doi.org/10.3390/pr11020354
Mendeley helps you to discover research relevant for your work.