Recurrent neural networks for online remaining useful life estimation in ion mill etching system

15Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

We describe the approach - submitted as part of the 2018 PHM Data Challenge - for estimating time-to-failure or Remaining Useful Life (RUL) of Ion Mill Etching Systems in an online fashion using data from multiple sensors. RUL estimation from multi-sensor data can be considered as learning a regression function that maps a multivariate time series to a real-valued number, i.e. the RUL. We use a deep Recurrent Neural Network (RNN) to learn the metric regression function from multivariate time series. We highlight practical aspects of the RUL estimation problem in this data challenge such as i) multiple operating conditions, ii) lack of knowledge of exact onset of failure or degradation, iii) different operational behavior across tools in terms of range of values of parameters, etc. We describe our solution in the context of these challenges. Importantly, multiple modes of failure are possible in an ion mill etching system; therefore, it is desirable to estimate the RUL with respect to each of the failure modes. The data challenge considers three such modes of failures and requires estimating RULs with respect to each one, implying learning three metric regression functions - one corresponding to each failure mode. We propose a simple yet effective extension to existing methods of RUL estimation using RNN based regression to learn a single deep RNN model that can simultaneously estimate RULs corresponding to all three failure modes. Our best model is an ensemble of two such RNN models and achieves a score of 1.91 × 107 on the final validation set.

Cite

CITATION STYLE

APA

Vishnu, T. V., Gupta, P., Malhotra, P., Vig, L., & Shroff, G. (2018). Recurrent neural networks for online remaining useful life estimation in ion mill etching system. In Proceedings of the Annual Conference of the Prognostics and Health Management Society, PHM. Prognostics and Health Management Society. https://doi.org/10.36001/phmconf.2018.v10i1.589

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free