Role of oxidative stress in telomere shortening in cultured fibroblasts from normal individuals and patients with ataxia-telengiectasia

124Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cells from patients with the autosomal recessive disorder ataxia-telangiectasia (A-T) display accelerated telomere shortening upon culture in vitro. It has been suggested that A-T cells are in a chronic state of oxidative stress, which could contribute to their enhanced telomere shortening. In order to examine this hypothesis, we monitored the changes in telomere length in A-T homozygous, heterozygous and control fibroblasts cultured in vitro under various conditions of oxidative stress using quantitative fluorescent in situ hybridization. Compared with normal cells, the rate of telomere shortening was 1.5-fold increased under 'normal' levels of oxidative stress in A-T heterozygous cells and 2.4-3.2-fold in A-T homozygous cells. Mild chronic oxidative stress induced by hydrogen peroxide increased the rate of telomere shortening in A-T cells but not in normal fibroblasts and the telomere shortening rate decreased in both normal and A-T fibroblasts if cultures were supplemented with the anti-oxidant phenyl-butyl-nitrone. Increased telomere shortening upon oxidative stress in A-T cells was associated with a significant increase in the number of extrachromosomal fragments of telomeric DNA and chromosome ends without detectable telomere repeats. We propose that the ATM (A-T mutated) protein has a role in the prevention or repair of oxidative damage to telomeric DNA and that enhanced sensitivity of telomeric DNA to oxidative damage in A-T cells results in accelerated telomere shortening and chromosomal instability.

References Powered by Scopus

A single ataxia telangiectasia gene with a product similar to PI-3 kinase

2461Citations
N/AReaders
Get full text

Switching and signaling at the telomere

1846Citations
N/AReaders
Get full text

Heterogeneity in telomere length of human chromosomes

757Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Telomeres and human disease: Ageing, cancer and beyond

1370Citations
N/AReaders
Get full text

Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21<sup>CIP1</sup>, but not p16<sup>INK4a</sup>

1057Citations
N/AReaders
Get full text

The signals and pathways activating cellular senescence

862Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Tchirkov, A., & Lansdorp, P. M. (2003). Role of oxidative stress in telomere shortening in cultured fibroblasts from normal individuals and patients with ataxia-telengiectasia. Human Molecular Genetics, 12(3), 227–232. https://doi.org/10.1093/hmg/ddg023

Readers over time

‘10‘11‘12‘13‘14‘15‘16‘17‘18‘19‘20‘21‘22‘23‘24036912

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 23

56%

Researcher 11

27%

Professor / Associate Prof. 7

17%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 16

38%

Biochemistry, Genetics and Molecular Bi... 13

31%

Medicine and Dentistry 10

24%

Chemistry 3

7%

Save time finding and organizing research with Mendeley

Sign up for free
0