Gait event detection based on inter-joint coordination using only angular information

5Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The detection of gait events with wearable sensors is necessary for a robotic system interacting with walking people. Conventional gait phase detection methods are based on machine learning. However, this method cannot detect a gait event every gait cycle because it is difficult to extract characteristic points. Additionally, using only angular information for detection is beneficial because angular information is needed for the control and evaluation of the robots. This paper proposes a novel algorithm for the detection of heel contact and toe-off using the inter-joint coordination of the hip, knee, and ankle joints that has a lower-dimensional structure. The proposed algorithm derives the four planes in the angular space and finds the switching points of the planes. Seven participants walked on force plates that measured the force of the foot against the floor. The error was less than 0.035 s when the gait events were detected after calculating planes using the first gait datum. The change in the patterns of the inter-joint coordination reflected the change in gait phases. Although the data were calculated offline, the results show that the heel contact and toe-off could be detected as soon as the angles were sensed once the planes were derived.

Cite

CITATION STYLE

APA

Miyake, T., Kobayashi, Y., Fujie, M. G., & Sugano, S. (2020). Gait event detection based on inter-joint coordination using only angular information. Advanced Robotics, 34(18), 1190–1200. https://doi.org/10.1080/01691864.2020.1803126

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free