Role of carotenoid β-cryptoxanthin in bone homeostasis

58Citations
Citations of this article
71Readers
Mendeley users who have this article in their library.

Abstract

Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Aging induces bone loss due to decreased osteoblastic bone formation and increased osteoclastic bone resorption. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Nutritional factors may play a role in the prevention of bone loss with aging. Among various carotenoids (carotene and xanthophylls including beta (β)-cryptoxanthin, lutein, lycopene, β-carotene, astaxanthin, and rutin), β-cryptoxanthin, which is abundant in Satsuma mandarin orange (Citrus unshiu MARC.), has been found to have a stimulatory effect on bone calcification in vitro. β-cryptoxanthin has stimulatory effects on osteoblastic bone formation and inhibitory effects on osteoclastic bone resorption in vitro, thereby increasing bone mass. β-cryptoxanthin has an effect on the gene expression of various proteins that are related osteoblastic bone formation and osteoclastic bone resororption in vitro. The intake of β-cryptoxanthin may have a preventive effect on bone loss in animal models for osteoporosis and in healthy human or postmenopausal women. Epidemiological studies suggest a potential role of β-cryptoxanthin as a sustainable nutritional approach to improving bone health of human subjects. β-Cryptoxanthin may be an osteogenic factor in preventing osteoporosis in human subjects. © 2012 Yamaguchi; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Yamaguchi, M. (2012). Role of carotenoid β-cryptoxanthin in bone homeostasis. Journal of Biomedical Science. https://doi.org/10.1186/1423-0127-19-36

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free