We propose a joint event and temporal relation extraction model with shared representation learning and structured prediction. The proposed method has two advantages over existing work. First, it improves event representation by allowing the event and relation modules to share the same contextualized embeddings and neural representation learner. Second, it avoids error propagation in the conventional pipeline systems by leveraging structured inference and learning methods to assign both the event labels and the temporal relation labels jointly. Experiments show that the proposed method can improve both event extraction and temporal relation extraction over state-of-the-art systems, with the end-to-end F1 improved by 10% and 6.8% on two benchmark datasets respectively.
CITATION STYLE
Han, R., Ning, Q., & Peng, N. (2019). Joint event and temporal relation extraction with shared representations and structured prediction. In EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference (pp. 434–444). Association for Computational Linguistics. https://doi.org/10.18653/v1/d19-1041
Mendeley helps you to discover research relevant for your work.