Decoherence and oscillations of supernova neutrinos

33Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Supernova neutrinos have several exceptional features which can lead to interesting physical consequences. At the production point their wave packets have an extremely small size σx∼ 10 - 11 cm; hence the energy uncertainty can be as large as the energy itself, σE∼ E, and the coherence length is short. On the way to the Earth the wave packets of mass eigenstates spread to macroscopic sizes and separate. Inside the Earth the mass eigenstates split into eigenstates in matter and oscillate again. The coherence length in the Earth is comparable with the radius of the Earth. We explore these features and their consequences. (1) We present new estimates of the wave packet size. (2) We consider the decoherence condition for the case of wave packets with spatial spread and show that it is not modified by the spread. (3) We study the coherence of neutrinos propagating in a multi-layer medium with density jumps at the borders of layers. In this case coherence can be partially restored due to a “catch-up effect”, increasing the coherence length beyond the usual estimate. This catch-up effect can occur for supernova neutrinos as they cross the shock wave fronts in the exploding star or the core of the Earth.

Cite

CITATION STYLE

APA

Kersten, J., & Smirnov, A. Y. (2016). Decoherence and oscillations of supernova neutrinos. European Physical Journal C, 76(6). https://doi.org/10.1140/epjc/s10052-016-4187-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free