Neural Network as a Tool for Design of Amorphous Metal Alloys with Desired Elastoplastic Properties

3Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.

Abstract

The development and implementation of the methods for designing amorphous metal alloys with desired mechanical properties is one of the most promising areas of modern materials science. Here, the machine learning methods appear to be a suitable complement to empirical methods related to the synthesis and testing of amorphous alloys of various compositions. In the present work, a method is proposed a method to determine amorphous metal alloys with mechanical properties closest to those required. More than 50,000 amorphous alloys of different compositions have been considered, and the Young’s modulus E and the yield strength (Formula presented.) have been evaluated for them by the machine learning model trained on the fundamental physical properties of the chemical elements. Statistical treatment of the obtained results reveals that the fundamental physical properties of the chemical element with the largest mass fraction are the most significant factors, whose values correlate with the values of the mechanical properties of the alloys, in which this element is involved. It is shown that the values of the Young’s modulus E and the yield strength (Formula presented.) are higher for amorphous alloys based on Cr, Fe, Co, Ni, Nb, Mo and W formed by the addition of semimetals (e.g., Be, B, Al, Sn), nonmetals (e.g., Si and P) and lanthanides (e.g., La and Gd) than for alloys of other compositions. Increasing the number of components in alloy from 2 to 7 and changing the mass fraction of chemical elements has no significantly impact on the strength characteristics E and (Formula presented.). Amorphous metal alloys with the most improved mechanical properties have been identified. In particular, such extremely high-strength alloys include Cr (Formula presented.) B (Formula presented.) (among binary), Mo (Formula presented.) B (Formula presented.) W (Formula presented.) (among ternary) and Cr (Formula presented.) B (Formula presented.) Nb (Formula presented.) Pd (Formula presented.) Ta (Formula presented.) Si (Formula presented.) (among multicomponent).

Cite

CITATION STYLE

APA

Galimzyanov, B. N., Doronina, M. A., & Mokshin, A. V. (2023). Neural Network as a Tool for Design of Amorphous Metal Alloys with Desired Elastoplastic Properties. Metals, 13(4). https://doi.org/10.3390/met13040812

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free