Lncrna dscam-as1 promotes non-small cell lung cancer progression via regulating mir-577/hmgb1 axis

14Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Non-small cell lung cancer (NSCLC) is a major source of cancer mortality. Long non-coding RNA DSCAM-AS1 has been certified to be involved in the pathogenesis of NSCLC. This study aimed to further investigate the potential mechanism of DSCAM-AS1 in NSCLC progression. The expressions of DSCAM-AS1, miR-577, and high mobility group box 1 (HMGB1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell viability was assessed by Cell Counting Kit-8 (CCK-8) assay. Flow cytometry assay was conducted to monitor cell apoptosis. Cell migration and invasion were measured by transwell assay. Wnt/β-catenin pathway-related factors were detected by western blot assay. The relationship between DSCAM-AS1, miR-577, and HMGB1 was validated by bioinformatics analysis and dual-luciferase reporter assay. The xenograft mouse model was established to analyze tumor growth in vivo. DSCAM-AS1 and HMGB1 were upregulated, while miR-577 was downregulated in NSCLC tissues and cells. DSCAM-AS1 promoted cell proliferation, migration and invasion, and restrained cell apoptosis in NSCLC cells. Overexpression of HMGB1 reversed the effects of DSCAM-AS1 depletion on the progression of NSCLC. DSCAM-AS1 modulated HMGB1 expression by sponging miR-577. DSCAM-AS1 regulated the Wnt/β-catenin pathway by regulating miR-577 and HMGB1. DSCAM-AS1 knock-down blocked the tumor growth in vivo. In conclusion, DSCAM-AS1 facilitated NSCLC progression by regulating the HMGB1-mediated Wnt/β-catenin pathway, providing a promising therapeutic target for NSCLC.

Cite

CITATION STYLE

APA

Qiu, Z., Pan, X. X., & You, D. Y. (2020). Lncrna dscam-as1 promotes non-small cell lung cancer progression via regulating mir-577/hmgb1 axis. Neoplasma, 67(4), 871–879. https://doi.org/10.4149/neo_2020_190826N821

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free