Displacing hexokinase from mitochondrial voltage-dependent anion channel impairs GLT-1-mediated glutamate uptake but does not disrupt interactions between GLT-1 and mitochondrial proteins

28Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The glutamate transporter GLT-1 is the major route for the clearance of extracellular glutamate in the forebrain, and most GLT-1 protein is found in astrocytes. This protein is coupled to the Na+ electrochemical gradient, supporting the active intracellular accumulation of glutamate. We recently used a proteomic approach to identify proteins that may interact with GLT-1 in rat cortex, including the Na+/K+-ATPase, most glycolytic enzymes, and several mitochondrial proteins. We also showed that most GLT-1 puncta (∼70%) are overlapped by mitochondria in astroglial processes in organotypic slices. From this analysis, we proposed that the glycolytic enzyme hexokinase (HK)-1 might physically form a scaffold to link GLT-1 and mitochondria because HK1 is known to interact with the outer mitochondrial membrane protein voltage-dependent anion channel (VDAC). The current study validates the interactions among HK-1, VDAC, and GLT-1 by using forward and reverse immunoprecipitations and provides evidence that a subfraction of HK1 colocalizes with GLT-1 in vivo. A peptide known to disrupt the interaction between HK and VDAC did not disrupt interactions between GLT-1 and several mitochondrial proteins. In parallel experiments, displacement of HK from VDAC reduced GLT-1-mediated glutamate uptake. These results suggest that, although HK1 forms coimmunoprecipitatable complexes with both VDAC and GLT-1, it does not physically link GLT-1 to mitochondrial proteins. However, the interaction of HK1 with VDAC supports GLT-1-mediated transport activity.

Cite

CITATION STYLE

APA

Jackson, J. G., O’Donnell, J. C., Krizman, E., & Robinson, M. B. (2015). Displacing hexokinase from mitochondrial voltage-dependent anion channel impairs GLT-1-mediated glutamate uptake but does not disrupt interactions between GLT-1 and mitochondrial proteins. Journal of Neuroscience Research, 93(7), 999–1008. https://doi.org/10.1002/jnr.23533

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free