Multiobjective genetic algorithm (MOGA) is a direct search method for multiobjective optimization problems. It is based on the process of the genetic algorithm; the population-based property of the genetic algorithm is well applied in MOGAs. Comparing with the traditional multiobjective algorithm whose aim is to find a single Pareto solution, the MOGA intends to identify numbers of Pareto solutions. During the process of solving multiobjective optimization problems using genetic algorithm, one needs to consider the elitism and diversity of solutions. But, normally, there are some trade-offs between the elitism and diversity. For some multiobjective problems, elitism and diversity are conflicting with each other. Therefore, solutions obtained by applying MOGAs have to be balanced with respect to elitism and diversity. In this paper, we propose metrics to numerically measure the elitism and diversity of solutions, and the optimum order method is applied to identify these solutions with better elitism and diversity metrics. We test the proposed method by some well-known benchmarks and compare its numerical performance with other MOGAs; the result shows that the proposed method is efficient and robust.
CITATION STYLE
Long, Q., Wu, C., Wang, X., Jiang, L., & Li, J. (2015). A Multiobjective Genetic Algorithm Based on a Discrete Selection Procedure. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/349781
Mendeley helps you to discover research relevant for your work.