Stochastic cluster embedding

2Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Neighbor embedding (NE) aims to preserve pairwise similarities between data items and has been shown to yield an effective principle for data visualization. However, even the best existing NE methods such as stochastic neighbor embedding (SNE) may leave large-scale patterns hidden, for example clusters, despite strong signals being present in the data. To address this, we propose a new cluster visualization method based on the Neighbor Embedding principle. We first present a family of Neighbor Embedding methods that generalizes SNE by using non-normalized Kullback–Leibler divergence with a scale parameter. In this family, much better cluster visualizations often appear with a parameter value different from the one corresponding to SNE. We also develop an efficient software that employs asynchronous stochastic block coordinate descent to optimize the new family of objective functions. Our experimental results demonstrate that the method consistently and substantially improves the visualization of data clusters compared with the state-of-the-art NE approaches. The code of our method is publicly available at https://github.com/rozyangno/sce.

Cite

CITATION STYLE

APA

Yang, Z., Chen, Y., Sedov, D., Kaski, S., & Corander, J. (2023). Stochastic cluster embedding. Statistics and Computing, 33(1). https://doi.org/10.1007/s11222-022-10186-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free