The many entropies in one-way functions

7Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Computational analogues of information-theoretic notions have given rise to some of the most interesting phenomena in the theory of computation. For example, computational indistinguishability, Goldwasser and Micali [9], which is the computational analogue of statistical distance, enabled the bypassing of Shannon’s impossibility results on perfectly secure encryption, and provided the basis for the computational theory of pseudorandomness. Pseudoentropy, Håstad, Impagliazzo, Levin, and Luby [17], a computational analogue of entropy, was the key to the fundamental result establishing the equivalence of pseudorandom generators and oneway functions, and has become a basic concept in complexity theory and cryptography. This tutorial discusses two rather recent computational notions of entropy, both of which can be easily found in any one-way function, the most basic cryptographic primitive. The first notion is next-block pseudoentropy, Haitner, Reingold, and Vadhan [14], a refinement of pseudoentropy that enables simpler and more efficient construction of pseudorandom generators. The second is inaccessible entropy, Haitner, Reingold, Vadhan, andWee [11], which relates to unforgeability and is used to construct simpler and more efficient universal one-way hash functions and statistically hiding commitments.

Cite

CITATION STYLE

APA

Haitner, I., & Vadhan, S. (2017). The many entropies in one-way functions. In Information Security and Cryptography (Vol. 0, pp. 159–217). Springer International Publishing. https://doi.org/10.1007/978-3-319-57048-8_4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free