Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion

73Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

We establish global existence and uniqueness theorems for the two-dimensional non-diffusive Boussinesq system with anisotropic viscosity acting only in the horizontal direction, which arises in ocean dynamics models. Global well-posedness for this system was proven by Danchin and Paicu; however, an additional smoothness assumption on the initial density was needed to prove uniqueness. They stated that it is not clear whether uniqueness holds without this additional assumption. The present work resolves this question and we establish uniqueness without this additional assumption. Furthermore, the proof provided here is more elementary; we use only tools available in the standard theory of Sobolev spaces, and without resorting to para-product calculus. We use a new approach by defining an auxiliary "stream-function" associated with the density, analogous to the stream-function associated with the vorticity in 2D incompressible Euler equations, then we adapt some of the ideas of Yudovich for proving uniqueness for 2D Euler equations. © 2013 Elsevier Inc.

Cite

CITATION STYLE

APA

Larios, A., Lunasin, E., & Titi, E. S. (2013). Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion. Journal of Differential Equations, 255(9), 2636–2654. https://doi.org/10.1016/j.jde.2013.07.011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free