Resilience-cost tradeoff supply chain planning for the prefabricated construction project

31Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

Abstract

. Delivery of the prefabricated components may be disrupted by low productivity and various of traffic restrictions, thus delaying the prefabricated construction project. However, planning of the prefabricated component supply chain (PCSC) under disruptions has seldom been studied. This paper studies the construction schedule-dependent resilience for the PCSC plan by considering transportation costs and proposes a multi-objective optimization model. First, the PCSC planning problem regarding schedule-dependent resilience and resultant transportation cost is analyzed. Second, a quantification scheme of the schedule-dependent resilience of the PCSC plan is proposed. Third, formulation of the resilience-cost tradeoff optimization model for the PCSC planning is developed. Fourth, the multi-objective particle swarm optimization (MOPSO)-based method for solving the resilience-cost tradeoff model is presented. Finally, a case study is presented to demonstrate and justify the developed method. This study contributes to the knowledge and methodologies for PCSC management by addressing resilience at the planning stage.

Cite

CITATION STYLE

APA

Zhang, H., & Yu, L. (2021). Resilience-cost tradeoff supply chain planning for the prefabricated construction project. Journal of Civil Engineering and Management, 27(1), 45–59. https://doi.org/10.3846/jcem.2021.14114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free