A New Method for Weak Fault Feature Extraction Based on Improved MED

12Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Because of the characteristics of weak signal and strong noise, the low-speed vibration signal fault feature extraction has been a hot spot and difficult problem in the field of equipment fault diagnosis. Moreover, the traditional minimum entropy deconvolution (MED) method has been proved to be used to detect such fault signals. The MED uses objective function method to design the filter coefficient, and the appropriate threshold value should be set in the calculation process to achieve the optimal iteration effect. It should be pointed out that the improper setting of the threshold will cause the target function to be recalculated, and the resulting error will eventually affect the distortion of the target function in the background of strong noise. This paper presents an improved MED based method of fault feature extraction from rolling bearing vibration signals that originate in high noise environments. The method uses the shuffled frog leaping algorithm (SFLA), finds the set of optimal filter coefficients, and eventually avoids the artificial error influence of selecting threshold parameter. Therefore, the fault bearing under the two rotating speeds of 60 rpm and 70 rpm is selected for verification with typical low-speed fault bearing as the research object; the results show that SFLA-MED extracts more obvious bearings and has a higher signal-to-noise ratio than the prior MED method.

Cite

CITATION STYLE

APA

Li, J., Jiang, J., Fan, X., Wang, H., Song, L., Liu, W., … Chen, L. (2018). A New Method for Weak Fault Feature Extraction Based on Improved MED. Shock and Vibration, 2018. https://doi.org/10.1155/2018/9432394

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free