Comprehensive structural and thermodynamic analysis of prefibrillar WT α-synuclein and its G51D, E46K, and A53T mutants by a combination of small-angle X-ray scattering and variational Bayesian weighting

7Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The in solution synchrotron small-angle X-ray scattering SAXS technique has been used to investigate an intrinsically disordered protein (IDP) related to Parkinson’s disease, the α-synuclein (α-syn), in prefibrillar diluted conditions. SAXS experiments have been performed as a function of temperature and concentration on the wild type (WT) and on the three pathogenic mutants G51D, E46K, and A53T. To identify the conformers that populate WT α-syn and the pathogenic mutants in prefibrillar conditions scatterin data have been analyzed by a new variational bayesian weighting method (VBWSAS) based on an ensemble of conformers, which includes unfolded monomers, trimers, and tetramers, both in helical-rich and strand-rich forms. The developed VBWSAS method uses a thermodynamic scheme to account for temperature and concentration effects and considers long-range protein-protein interactions in the framework of the random phase approximation. The global analysis of the whole set of data indicates that WT α-syn is mostly present as unfolded monomers and trimers (helical-rich trimers at low T and strand-rich trimers at high T), but not tetramers, as previously derived by several studies. On the contrary, different conformer combinations characterize mutants. In the α-syn G51D mutant, the most abundant aggregates at all the temperatures are strand-rich tetramers. Strand-rich tetramers are also the predominant forms in the A53T mutant, but their weight decreases with temperature. Only monomeric conformers, with a preference for the ones with the smallest sizes, are present in the E46K mutant. The derived conformational behavior then suggests a different availability of species prone to aggregate, depending on mutation, temperature, and concentration and accounting for the different neurotoxicity of α-syn variants. Indeed, this approach may be of pivotal importance to describe conformational and aggregational properties of other IDPs.

Cite

CITATION STYLE

APA

Moretti, P., Mariani, P., Ortore, M. G., Plotegher, N., Bubacco, L., Beltramini, M., & Spinozzi, F. (2020). Comprehensive structural and thermodynamic analysis of prefibrillar WT α-synuclein and its G51D, E46K, and A53T mutants by a combination of small-angle X-ray scattering and variational Bayesian weighting. Journal of Chemical Information and Modeling, 60(10), 5265–5281. https://doi.org/10.1021/acs.jcim.0c00807

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free